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PREFACE

This report is an adaptation of the dissertation of Paul Jerry
Latimer submitted to the Department of Physics at The University of
Tennessee in partial fulfillment of the requirements of the degree

of Doctor of Philosophy.

The ultrasonic harmonic generation technique previously used to
measure third-order elastic (TOE) constants of crystals of cubic
symmetry has been extended to measurement of crystals of trigonal
symmetry. The theory for nonpiezoelectric trigonal crystals of J.
Philip [Technical Report No. 22, Office of Naval Research, Contract
No. NOO0D14-81-K-0229 (to be published in 1983)] has been combined
with the piezoelectric theory of McMahon [J. Acoust. Soc. Am. 44, 1007
(1968)] to determine the effective TOE constants in a piezoelectric
solid, and a correction has been made in McMahon's expression.

Measurements in weakly piezoelectric quartz have produced values
of C”1 and C333 which agree within experimental uncertainty with
values of R. N. Thurston, H. J. McSkimin and P. Andreatch, Jr. [J.
Appl. Phys. 37, 267 (1966)] and R. Stern and R. T. Smith [J. Acoust.
Soc. Am. 44, 640 (1968)] after corrections have been made for the

effect of diffraction on the data. Measurements in strongly piezo-

electric LiNbO3 have resulted in values which agree reasonably well
with those of J. Philip and M. A. Breazeale [Proc. IEEE Ultrasonics

Symposium, Vol. 2 (1982)] but disagree with those of C. Y. Nakagawa,

K. Yamanouchi and K. Shibayama [J. Appl. Phys. 44, 3969 (1973)].
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There is indication of some sample dependence of the values of both
the second-order elastic constants as well as the third-order elastic
constants of L1‘Nb03 samples currently available.

In the course of measurement of the TOE constants a negative
nonlinearity parameter was observed for the piezoelectric [100]
direction in quartz. This peculiarity is impossible for thermodynamic
reasons in fluids, but has been observed onée previously in fused
silica [J. Bains and M. A. Breazeale, J. Acoust. Soc. Am. 57, 745
(1975)]. The nonlinearity parameter appears to be positive for the
piezoelectric [001] direction in LiNbO,.

The data presented are for the "piezoelectrically stiffened" TOE
constants; however, there are preliminary indications that the har-
monic generation technique may give access to the constant field TOE
constants nga.
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CHAPTER 1

INTRODUCTION

Over the past several years it has become increasingly evident
that a linear theory is inadequate to give a detailed accounting of
the properties of solids. Many basic properties of solids can be
explained only on the basis of nonlinear theory. Among these
properties are thermal expansion, interaction of lattice waves,
inequality of adiabatic and isothermal elastic constants, and the
dependence of the elastic constants on pressure and temperature.

The description of the nonlinear properties of solids is made
in terms of the higher-order elastic constants. The elastic constants
are the coefficients of the terms of a series expansion of the strain
energy per unit volume of the solid in powers of the strains. The
coefficients of the second powers in strains are the ordinary elastic
constants which appear in linear theories and the coefficients of the
third powers in strain are the third-order elastic (TOE) constants
which are the subject of this dissertation. This is a problem of funda-
mental interest to solid state physics: the measurement of higher-
order elastic constants and the correlation of their magnitude with
physical pronerties. Technological implications are important as well.

The second-order elastic (SOE) constants are determined directly
from the measurement of the velocity of the ultrasonic waves in the
solid; the TOE constants must be measured by a combination of at

least two techniques.
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Measu-ement of the dependence of second-order elastic constants
on hydrostatic pressure gives combipations of third-order elastic
constants but does not give the complete set for a particular crystal
symmetry. Lazarus (1949) measured the pressure dependence of SOE
constants of NaCl, KC1, CuZn, Cu, and Al. Hearmon (1953) using
equations obtained by Birch (1947) determined the combination of TOE
constants which could be calculated from Lazarus' data.

To determine a complete set of TOE constants, one can in addition
evaluate the change in ultrasonic wave velocity with uniaxial stress.
This technique, which has some inherent shortcomings, does give a
complete set of TOE constants if the data are used in combination
with hydrostatic pressure measurements. The first complete set of
TOE constants for an isotropic material was made by Hughes and Kelly
(1953) by measuring the change of ultrasonic wave velocity with hydro-
static pressure and with uniaxial stress in polystyrene and plexiolass.
Seeger and Buck (1960) developed a theory for sound velocities in
crystals subject to hydrostatic pressure and uniaxial stress in terms
of SOE and TOE constants for cubic crystals. Bateman, Mason and
McSkimin (1961) performed measurements on germanium and obtained the
first complete set of six TOE constants of a cubic crystal. Since
that time measurements have been made on a large number of cubic
crystals using the uniaxial stress and hydrostatic pressure
derivatives.

The other technique which has been widely used to measure the

TOE constants of solids is the ultrasonic harmonic generation
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technique described by Breazeale and Thompson (1963) and independently
by Gedroits and Krasilnikov (1963). Breazeale and Ford (1965) solved
the nonlinear equation of motion for the case of isotropic solids and
cubic crystals. Gauster and Breazeale (19€6) developed the capacitive
receiver which is capable of yielding a combination of TOE constants
from the absolute amplitudes of the fundamental and second harmonic
of a finite amplitude ultrasonic wave as it propagates through a non-
linear solid. Since that time many measurements have been made for
cubic crystals using this technigue as reported in a comprehensive
review by Breazeale and Philip (1983). Very few measurements of TOE
constants have been reported for crystals in the trigonal group. As
the symmetry becomes lower (Hearmon, 1979), the number of elastic con-
stants increases. For example, crystals belonging to the 3m, 32, 3m
class in the trigonal symmetry group have 14 TOE constants. McMahon
(1968) developed a nonlinear theory for the evaluation of certain
TOE constants of piezoelectric solids by second harmonic generation.
In his theory McMahon evaluates the effect of piezoelectric "stiffen-
ing" upon both the SOE and TOE constants. He shows that the overall
effect of piezoelectricity is to increase the magnitude of both the
SOE and TOE constants. He then evaluates the effective constants in
terms of other higher-order constants of the material. Philip (1983)
extended the linear theory for nonpiezoelectric solids in a very
general way such that the nonlinear distortion of finite amplitude
waves could be described in the case of trigonal symmetry by a

perturbation solution of the nonlinear equation.




Of the work done on crystals with trigonal symmetry, the

hydrostatic and uniaxial stress derivatives of ultrasonic wave velocity

is the technique which has been used almost exclusively. To the
author's knowledge, no previous harmonic generation measurements have |
been performed with the capacitive detector on a material with |
trigonal symmetry—except for some preliminary measurements made by
Philip and Breazeale (1982) on lithium niobate.

The first full set of TOE constants for a trigonal crystal was
measured by Thurston et al. (1966). They used the hydrostatic pressure

uniaxial stress derivative technique to determine the 14 TOE constants

of quartz. Quartz is a weakly coupled piezoelectric material in
which the effect of acoustical variation of the electrical conditons
does not make a perceptible change in the measured value of the
elastic constants. Thurston et al. (1966) claimed that the piezo-
electric coupling is weak enough that the effect on their measure-
ments was within experimental error, and therefore they made no
distinction between the TOE constants at constant electric field and
the effective TOE constants they measured.

Stern and Smith (1968) measured the TOE constants of quartz using
a pulse echo interferometer technique, a modification of the uniaxial
stress-hydrostatic pressure derivative technique. ‘Their values were

in good agreement with those of Thurston et al. (1966).

A microwave ultrasonic harmonic generation technique has been
used by Carr (1968) to determine the TOE constants Cy,; and C333 of

h quartz and sapphire. The technique consisted of generating a




microwave ultrasonic fundamental at one end of the sample and
detecting the second harmonic at the other end by the piezoelectric
effect. The quantitative measurements of the second harmonic led to
a determination of the TOE constants. Even though C-”1 for both
samples agreed reasonably well with other published data, Carr's
value for C333 appeared to be considerably greater in magnitude than
other measurements.

Graham (1972) described a method for obtaining longitudinal TOE
constants of X-cut quartz: Solids are subjected to shock wave loading
and undergo compression. The shock compression data were analyzed to
determine C]]] and C]”-| for X-cut quartz. The determination of the
TOE constants under these large compressions allows one to test the
applicability of the finite strain formulation of the constitutive
relations.

The 14 TOE constants of trigonal A1203 were measured by Hankey
and Schuele {(1970). They measured hydrostatic pressure and uniaxial
stress dependence of the ultrasonic wave velocity by the pulse echo
technique.

Kaga (1968) measured the TOE constants of trigonal calcite using
a pulse-superposition technique with uniaxial stress and hydrostatic
pressure.

The TOE constants of the strongly coupled piezoelectric trigonal
LiNbO3 crystal were measured by Nakagawa et al. (1973). A pulse trans-
mission technique was used to determine the velocity of small ampli-

tude ultrasonic waves as a function of applied stress. Piezoelectric

— —




terms were included in the calciulation of pressure de -ivatives of
sound velocity in terms of the TOE constants developed by Thurston

and Brugger (1965); however, lack of piezoelectric coefficients pre-
(E)
ijk’
(1979) erroneously reported that the TOE constants measured by

vented evaluation of the constant field TOE constants C Hearmon
Nakagawa et al. (1973) were constant field coefficients. However,
Hearmon (1979) was correct in pointing out that the measurement errors
reported by Nakagawa et al. was sufficiently large that they cast some
doubt on the validity of the data. In particular, the errors were
largest for C11] and C333. These are the TOE constants which are
directly measured by the technique described in this thesis.

The measurements reported in this study were made on trigonal
crystals with the capacitive receiver. They allow a direct deter-
mination of the coefficients C]]] and C333 in trigonal crystals. One
objective in reporting the measurements is to experimentally verify
the theory of Philip (1983) for trigonal crystals. In addition, the
theory has been expanded to account for the effect of piezoelectricity
on the harmonic generation measurements. The expansion of the theory
closely parallels McMahon's derivation of an expression for the
effective elastic constant for piezoelectric materials, but corrects
an error in the final expression by McMahon (1965), an error that was
repeated in the derivation of the next higher order terms by Mathur
and Gupta (1970).

The effect of diffraction on the measurements also jis considered.

It is found that even with the large (1" diameter, 1.5" long) samples




and a D/) ratio of the order of 75, the effect of diffraction,
calculated by the procedure described by Blackburn (1981) cannot be
ignored.

Finally, the nonlinear behavior of the weakly coupled
piezoelectric trigonal quartz is compared with the behavior of

strongly coupled piezoelectric trigonal LiNbO3.




CHAPTER I1

THEORETICAL CONSIDERATIONS

The theory of second harmonic generation in trigonal crystals
can be developed in a general way, as shown by Philip (1983). The
piezoelectric relations can be derived by making some modifications
of the treatment of McMahon (1968) to make it more thermodynamically
correct (Brugger, 1964). In effect, the present work merges the
theories of Philip and McMahon to yield a suitable composite theory

for the treatment of piezoelectric crystals of trigonal symmetry.

A. GENERAL THEORY OF NONLINEAR WAVE PROPAGATION IN SOLIDS

. (a,b,c) in

Consider a point P in the medium with coordinates a;

the unstrained state (Philip, 1983). Let P move to P' with
coordinates x; (x,y,2) in the deformed state.
The components of the displacement can then be written as

u=x-a
v=y-b
W=2-2¢C. (1)

In the Lagrangian formulation, the strain is described in terms of
the initial or undeformed state, and the initial coordinates 3 of the
material particle are taken as independent variables. The Lagranogian

formulation is used exclusively in this development.
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The Lagrangian strain parameters which are components of the
finite strain tensor are given (Murnaghan, 1951) by
I I
n = ?'(J J-1) (2)
where J is the Jacobian matrix given by
1+ u, Yy u.
J= v, T4y v, (3)
Wa h 1+ we
_ au _ du % s .
and where u_ = ==, u, = =, etc., J* is the transpose of J, and I is
a sa b 9
the unit matrix.
Let ¢(n) be the strain energy per unit of undeformed volume.
The properties of the crystalline medium enter into the theory
through the strain energy ¢(n) which can be expressed in terms of
the ordinary elastic constants by proper rotation of the coordinates
P 111
o{n) = o i34 2 MijTke
+ %ijkamn N+ (4)
30 "2 "mn s

(Summing over repeated indices is implied.) The first two terms
vanish since 40 is the energy of the unstrained medium and ¢y =Cij“1j

corresponds to displacement without deformation. Therefore, the

expression for the strain energy becomes
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_lijke . Sijkemn N (5)
¢ = =7 "iiMke 3T "i"%e"mn T e -

where the strains are to be evaluated with coordinates along the

propagation direction, the Cijk are the second-order elastic (SOE)

2

constants and the C. are the third-order elastic (TOE) constants

ijkimn
(Brugger, 1964).

The SOE constants form a fourth rank tensor containing 81
components, of which 21 are independent for the most unsymmetrical
triclinic crystal and the TOE constants form a sixth rank tensor with

729 components of which 56 are independent for the triclinic crystal.

The number of elastic constants greatly decreases for crystals of

higher symmetry. For the class of trigonal crystals under con-
sideration there are 6 SOE and 14 TOE constants.
The equations of motion in Lagrangian coordinates are written as

(Philip, 1983; Thurston and Bruager, 1964)

3T, .

1 = .o
'—aa—jl = C‘Ou.i (6)

where °p is the undeformed mass density.
The equation of motion takes the following form along the a, b,

and ¢ axes of the crystal:

aT

T
.ol By, 13
e = 3 * 7 ¢t 3¢
o1 a7 5T
.9y 22 23
oo =2 Y bt Tic (7)
Ty, Ta, Ty

. - . )
Ow 3a 5b aC




The stress matrix T can be written as

9d 3¢ 3¢
T T T Joy  Jvs dyalls
' ]] ]2 13 ]] ]2 13 Oﬂ]«l aan an]3
) 36 20 3
T Ton Toal= 000 9. 0 . (8)
21 o2 Ta3 21 Y22 23|50,y Bnyy Bnyg
Py ¢ ¢ 20
Ty Ty Tazl 131 I3 33 33y I3y 333

Note that the Tij tensor defined here is not symmetric. Consider
the case of plane finite amplitude waves propagating along the three
axes of the medium under consideration. For plane waves propagating

along the a axis, the displacement component becomes

v =v(a, t) (9)

=
[]
£
Py
<Y
o+

and the equations of motion for thic case become

. 3T, .

pgu = aa| (longitudinal wave)
. aTZ]

eoV = 33 (transverse wave) (10)
. aT3]

oW = 53 (transverse wave) .

For longitudinal plane waves propagating along the a axis v = 0

and w = 0, so that one is left with

1 (1)
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Similarly, for plane waves propagating along the b axis
QY = 55 (transverse wave)
v = 2122
°0 5 (Tongitudinal wave) (12)
. T3
oW = 35 (transverse wave)

For longitudinal waves along the b axis u = 0, w = 0, and we are left

with

22 (13)

For plane waves propagating along the ¢ axis

aT

poﬁ = —3%2 (transverse wave)
NPT

ogV = e (transverse wave) (14)
RAEY L

oW = 3¢ (1ongitudinal wave) .

For longitudinal waves propagating along the ¢ axis u =0, v =0 and

we are left with

aT
.o 33
P vt (15)

These equations are solved for crystals belonging to the trigonal

class in the next section.

e
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B. SECOND HARMONIC GENERATION OF ULTRASOUND
IN CRYSTALS OF TRIGONAL SYMMETRY
There are two classes of trigonal crystals (Philip, 1983), one
with Hermann-Mauguin symmetry symbol 33 and the other with symbol 32,
3m, 3m. The first class has seven SOE constants and twenty TOE con-

stants and the latter has six SOE and fourteen TOE constants. Since

the crystals of interest in this investigation, quartz and Tithium
niobate, belong to this class, the class 32, 3m, 3m is considered

exclusively.

The unit cell of a crystal with trigonal symmetry is shown in
Figure II-1. A rotation of the coordinate system by 120° about the
[001] axis leads to an equivalent coordinate system. Inthe linear
approximation, pure mode longitudinal waves can propagate along the x

and 2z directions. It is a quasilongitudinal wave which propagates

along the y direction since the longitudinal mode is coupled to one
of the transverse modes. The elastic strain energy for the trigonal

case* is (Kaga, 1968):

R i 1 2
23(n) = t(n) = ¢(0) = ey + 03+ = 50 (0" * ")+ Cipngng,
* Cyalngonas * nagnyy) + Cygllngy = mpp)lngs + mgp) + (ngy + nyy)

1.2
(2 * 1)+ 3833733
2 2 2 20 1 2 2
* Caalngy” * gt *ngy” * mg) *allyy - Gypdlngg +ongy)

*The elastic constants are expressed in terms of a contracted
notation (Voigt, 1928) in which 11 -1, 22 -~ 2, 33 - 3, 23 - 4,
13 ~ 5, and 12 - 6. This means that the SOE constants have two sub-
scripts and the TOE constants have three.
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Z 001
¥ c-axis

— X [100]

TRIGONAL STRUCTURE

Y L01C]

|
‘ |
Co-ordinate 24 romj |
Frome c b-axis |
/1 |
/| ?
JS {200; |
] i
o« (N . at L Nx 1007 :

a \ | .
N a-oxis |
Y N |

|

| b (b) N\ ‘

For trigonal,
a=b=c¢ (c) Set of equivalent

directions 1n @ |
- - o] o !
X =g =Y <120° # 90 friconal svstem

Figure 1I-1. The coordinate system for crystals of trigonal symmetry.




1 3 2 1 2 2
+ 20 20112M M2 * 2C13(nny e * g )

1 2
+ 201am (23 * 1) + Cragningenas * Craafminzalngs * n32)

2 2
' + (npq + ngp)lngp” *+ npp”)
+lC “Z('\ + Non) + Cyapnaal{ngy = nys)(n + Nos)
| 74133733 (111 T 22 13833401y T N2p/in23 T N2
4 (nar 4 1) (s * 1))+ Cogaingsl + nayl)
N3 Y M3/t T 144°723 32

* n22(”312 ¥ ”132> + C155{”22(”232 + ”322) * ”11(”312 + ny5t)d

1 3,1 3 2 2
* §C0722” * Ca33nay * Caaanss {2y Tz
240y ‘ 3 2, . 2,
‘ * (']3] ¥ ﬂ]3 )} * C444{'6'(“23 + "\32) = ('723 + Y132)('13] + 13 )4

pa—

2
F(Ciqy * Gz - Caz2dnz ™

-]

-2 Xe- - -
+ -Cpig - 2120070 (103 * nag) * 7020017 7 Cniz * )7

2 20 .1
(ny2° *+ ™) * {280y = Cypg - Cop0)
2 20 1 2 20 1
X nyolnyp" + Ny S) #5013 = Cyagingslnyy” i)l

| + 3C154) 17 (031 + ny3)(ngp + npy)

1 1
l + 5(C1yg - Cqpa)ngalngy * m3)lg * 120) * 20-Chag Cis55)

(g3 * n32) gy + mzdlmz * mpp) * e (16)
' The strain derivatives were calculated (Philip, 1983) and from those
' derivatives the components of the stress tensor were obtained. From

that point the equations of motion were found for pure mode
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longitudinal 'vaves propagating alorg the symmetry directions [100] and
[001] which are, respectively, the a and c axes.

It is found that the equation of motion has the same form in

each case
eoU - au,, = tuyu (17)

with different values for the o« and ; for different directions. This
equation shows that pure mode longitudinal waves propagate along these
directions. The effect of the nonlinear term LU U, o is to be
determined.

A perturbation solution was obtained by Philip (1983) similar to

the technique used for the case of cubic symmetry. Let:
u = uO +u’ (18)

where u” << u0 and use the trial solution

0 - A sin(ka - wt) (19)

[=
I

and

=B asin2(ka - wt) +C a cos 2(ka - «t)

| =)
n

as the perburbation term. After one iteration the solution of the

equation of motion becomes

2,
u(a,t) = A sin(ka - wt) - [L£Al-§]a cos 2(ka - wt) . (20)
BOOCO




17
The equation of motion also can be written as
2 2 .2
5U & u 3u o u
on —5 - 2 = = . (21)
0 wtz aaz %8 Baz

Breazeale and Ford (1965) arrived at the same equation from the fluid

analogy of cubic crystals but divided the nonlinear terms as follows:

2 .2 2 " 2
ATU G u 3U o u U cu
en —5 = Ko ( + 3= )+ K, = (22)
0.2 2 a2 3a 4,2 352 ;2
or
2 2 2
U 5 u du o u
o - K, = = (3K, + Ky) == . (23)
0 3t2 2 9a2 2 3’ 3a aa2
The equations are the same if o = K2 and
D= (3K, + Ky) - (28)

Now consider the linear part of the wave equation

2 7
CO.J_% =« 3_% (25)
it Ja
2 .2
;;% = () ﬁ_% . (26)
st "0 2a

where CO is the phase velocity, and




2 a
C = = 18
0 o
2
2

Thus the solution to the wave equation for trigonal symmetry can be

written
. (3K2 + K3) »

u(a,t) = A sin(ka - wt) - [————?ﬁgr——-](kA) a cos 2(ka - «t).(29)
as long as K2 and K3 previously defined for cubic symmetry are inter-
preted in terms of trigonal symmetry.

As in the case of cubic crystals, we can define the ultrasonic
nonlinearity parameter for trigonal crystals as the negative of the
ratio of the nonlinear term to the linear term in the wave equation.
Thus the nonlinearity parameter is

3K, + K
s=-—»2—K——3. £30)

2 .
For an initially sinusoidal disturbance at a = 0 the solution to the
nonlinear equation can be written in terms of the nonlinearity

parameter as:
A]Zkz
8

u= A] sin(ka - «t) + 5 cos 2{ka - wt) (31)

where A] is the amplitude of the fundamental wave and

A 2k2a€

_
Az - _—‘—8‘ - (32)
is the amplitude of the generated second harmonic. In terms of

A2 and A], 8 is given by
A

21
e=8;\7';2"’ (33)
1 a
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or,
Ky = -K2(3 + 8) . (34)

Therefore, by measuring the fundamental amplitude A] and the second
harmonic amplitude A2, one can determine which can then be used to
evaluate K3, the linear combination of TOE constants. The parameters
K2 and K3 are given for each symmetry direction considered for

trigonal crystals in Table II-1.

TABLE 11-1
THE K2 AND K3 PARAMETERS FOR TRIGONAL SYMMETRY
Direction
of Wave K K
Propagation 2 3
[100] 1 i
[001] C33 C333
C. SECOND HARMONIC GENERATION IN TRIGONAL
PIEZOELECTRIC CRYSTALS
The Nonpiezoelectric Case
The equation of motion
oT.
OOui = 3;k (35)
k
also can be written
X
. 3 i 3
opu; = =— [ =] (36)
0" da, 3am a”km




(McMahon, 1968) where the strain energy

C. . ..
e k& ijkemn
e e Il FL L B PR (37)

It is convenient to follow Thurston (1964), who defines the thermo-

dynamic tension

t, = 22
km ankm (38)
so that the equation of motion becomes
3 0% ]
pal; = — [ — t . (39)
0" sak da km

The analysis which follows is made in terms of tkm'

Piezoelectric Solids

Now, consider a piezoelectric solid. McMahon (1968) points out
that if one holds the electric field constant, the strains resulting
from an acoustical disturbance directly produce stresses by means of
the elastic constants. If the electric field is free to vary, the
same result is produced by an indirect process. The applied strain
produces a polarization (direct piezoelectric effect) and consequently
an electric field is produced by means of the electric susceptibility.
This electric field in turn (increased piezoelectric effect) produces
a stress. Therefore as a consequence of the piezoelectric coupling,
oscillating strain fields are accompanied by oscillating electric
fields. These oscillating electric fields contribute to
the terms in the internal energy expression and thus produce changes

in both SOE constants and the TOE constants. The overall effect of
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the piezoelectric coupling is that the second-, third- and higher-
order elastic constants are not equal to the elastic constants
measured at constant applied electric fields. The constants then are
said to have been “"stiffened" by piezoelectfic coupling.

In a piezoelectric solid the internal energy is a function of
the eatropy, strain and electric displacement. In order to have as
variables the entropy, strain and electric field, one introduces the
thermodynamic potential H2 which is the electric enthalpy. One
defines the enthalpy H2 as the difference ¢ - EiDi’ where ¢ is the
internal energy per unit undeformed volume, Ei the electric field, and
Di the electric displacement (Dieulesaint and Royer, 1980; Graham,
1977; Baryshnikova and Lyamov, 1678). Expanding the enthalpy to

include the elastic, electric, piezoelectric and higher-order terms:

_ 1 ~(E) 1 ~(E)
Ho = 7 CiskiMiike ¥ 8 Cigkemn™i 3 ke mn
1 (S) 1 (S) 1
-7 695 B85 - § faakEiEiE T 8iakEingkeT 7 digkeBiEyke
1o el
2 Tijkmtiikem (40)

where M 5 are the strain components and Ei are the electric field com-
ponents. The superscripts E and S indicate measurement, respectively,
at constant applied electric field and constant strain. The material
constant eijk is the piezoelectric coupling constant. The constants
ijke are higher-order cross term coefficients. The
physical basis of each coefficient is as follows: cﬁ?& is related to

and f.

d i jkam

the nonlinear optic and electrooptic effects; dijkn is related both
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to elastooptic and electrostrictive effects; and f, is related to

ijkam
the electroacoustic effect (change in velocity of sound with applied

electric field). The lack of magnitudes of the f,

i jkam has prevented

evaluation of the constant electric field TOE constants. It should
be noted that the material constants in the above expression are
functions of the relative frequency of the strain and electric field
components. If both the electric field and strain frequencies lie
in the ultrasonic frequency range, then the value of these constants
is not necessarily equal to either their static value or to their
value at optical frequencies.

The correlation of the magnitude of the oscillating electric
field with the amplitude of the accompanying ultrasonic wave, is

given by* (Baryshnikova and Lyamov, 1978).

2 ,
t,, = —= {81) ‘
ij 3'ij
oH
_ 2
Dj = - 3?; (42)

Therefore:

*Note that throughout this development contracted notation
(Vvoigt, 1928) of the indices is not used until the relationships are
developed then contracted notation is used when later on an actual
numerical substitution is made into the relationship.
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= c(E) 1 e(E) - 1
85 = Cigke™e T 7 Cigkemnketmn T CkiiBk T 7 dkeijBiEs
B fmijszm”kﬁ (43)
. (S} 1 _(8)
Di = &35 By ek * 7 &i3kEiEk * Yigkanks
+ l f n:u N (44)
2 ijkimjk ‘am °
In addition, a solution to the coupled electromagnetic-elastic wave
problem uses the wave equation derived from Maxwell's equations:

!'v2 _ .

i SR (45)
solves it simultaneously with the nonlinear elastic equation of
motion:

. 5 Sxi
‘v * 5 [t (46)

and seeks a solution for plane waves propagating along the a, crystal
direction. The material constants in the expansion of the enthalpy
are then expressed in terms of the orthogonal Cartesian coordinate
system by means of a tensor transformation for rotated axes. In this

rotated coordinate frame, one can write the three component equations

from Eq. (45) as:

(?xﬁ)] = b] =0 (47)
2%E i
-———g—=uD p#1 (48)
2, P
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In order to get a solution one expands the electric field in
a power series of strain
Bi = onkMk * BilamMkm - (49)
The values of the a's and 8's are determined by substituting (49)
into Maxwell's equations. If one substitutes (44) into (47) and
eliminates E; through (49), one gets the result
() : (s)
0= Dy = (95 a5 * epndm * 20605785101 * 9951¢%1m
1 (S) ] .
Y Z Skt ?ﬂf11a1m)”1g”zm
+ hicher order products of strain and strain
derivatives. (50)

Since "3 is an arbitrary function of time, the first-, second- and

higher-order coefficients must separately vanish. Therefore, one

obtains the following relationships:

1551k * ek T O (51)
(S). 1 (S) 1 -
13 3 512m * 951 t 7 a5einam T e = 0. (82)

In order to eliminate the time and spatial differentials from
Eq. (45) one assumes a plane wave solution for the electric field

and displacements of the form:




|
4
|
E
!
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i(ka]-Qt) 21(ka1-Qt)

= Ei(1)e + Ei(Z)e + ...

i(ka]-Qt) Zi(ka]-Qt)
u; = ui(1)e + ui(2)e + ... (53)

The condition that the exchange of energy take place between the
acoustic and electric waves and their respective harmonics proceeds
sufficiently slowly so that the amplitude change is small in one

wavelength of sound and can be written as:

<< jku: (1) (54)

<< ikEi(1) . (55)

This condition is almost always met in practice, so if one neglects
the slow change in amplitude, then the spatial and time derivatives

are proportional to one another. This can be expressed as:

3

-

sa

D) x

P
) 3¢ - (56)

If this relationship is satisfied, Maxwell's equation for the
transverse electric-field components can be integrated immediately

with the result

= 57
cEp Dp . (57)

where we have defined
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)2 . (58)

™
1]
c|—
—
D=

By substituting Eqs. (44) and (49) into Eq. (57), Eq. (57) can be

written as
ela, y,ny, + B NiyNy. ) = (e(s)a +e . )s
plk 1k pkIm 1k 'Im pj “3lk  Tplk’ 1k
1 .(s)
* (e 51am T i1k im T 7 fpi % 1K%m

1

7 fotkim! kM - (59)

+

Because the strain components are arbitrary functions of time the
linear and quadratic terms are separately equal to each other. This

gives the remaining relationships necessary for the determination of

the o's and s's:

. _(s)
€01k T €pj %51k + epik (60)
_ (9)
CEotkIm = Spj S31kIm * 9p31k%5m
1) 1 )

7 £i3% k% * 2 foram -

When the second order terms are retained in the enthalpy, the
solution of five simultaneous equations [(46) and (48)1 ~nsists of
five normal modes representing the quasitransverse electromagnetic

waves. The presence of piezoelectric coupling therefore only slightly
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affects the characteristics of the acoustical and electromagnetic wave.
Adding higher-order terms to the enthalpy still does not affect the
resolution into quasielastic and quasielectromagnetic waves. There-
fore if one considers only the quasiacoustic wave motion and one
represents the velocity of light and the velocity of sound in the

medium by the respective symbols ¢ and v, one can write

whereas us§§) B %—<< ue. Since the first term on the right-hand sides
of Eqs. (60) and (61) are smaller by a factor of (v/c)2 than the
respective terms on the left-hand sides of the equations, one can with

1ittle error simplify these equations to read:

“olk T epri/E (63)
©otkim = dpitktim (%Jcéfgaizkajzm * %‘fp1k1m : (64)

Comparing Eq. (51) with Eq. (63) shows that
(65)

o1k << et o

which can be used to obtain the following values for the coefficients:

(4]
—_—

1k -
Iy Qp-lk = 0 . (66)
1

Mk T

G

€

=y

A comparison of Eq. (64) and Eq. (52) similarly shows
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Sp1k’lm “<Ehkam (67)
Equation (52) can be solved to give
5 am G - @ © F Fam - (68)
From Eq. (67) one can assume
=0. (69)

6p]k1m

Comparison of the relative sizes of the coefficients aj]k and

. 2
Ej]klm shows that E2 and E3 are smaller than E, by the ratio {v/c)”.

Consequently, one makes the approximation E2 = E3 = 0. The value

for E] then is found by substituting Eqs. (66) and (68) into Eq. (49).

The result of the substitution is

(S)
A TS [d111ke11: IR TARRT!
Dl e P e € Rl N (O T
" n N

1
PN LESTRPRLITLI PR (70)
ar

The next step is to substitute the value of E] into the expression

for ti For elastic waves traveling along the 2 axis, tis defined

i
by Egq. (41), is

¢ = clE) 2

]
i3 % CGii1eme - e1iEr - @B - frignbime

1

+ > (71)

(E)
Ci51mM e Mm
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If E1 is eliminated using Eq. (70)

(€) , E1kBrij 1 (E) e%?%911ke11zelii
ti; = Cijnk * - ETES'JJ“lk * 7 memelCisie 153
M 1

Ly |, 2t 2t
TS) 1) )
ki 1 TN

111k

- TR - s F
11¢ 2;? ;]ll] ] (72)
(e477)

Comparison with the nonpiezoelectric expression derived from

substituting ¢ into tkm = —33—3 gives the following result:

ankm
_ () (s)
Cistk = Gi31 * @1k B1g/<n (73)
(S)
c G IO R R A TSR AL LR AA ENARI L
516 = C537Km (573 S)
[ [
1 1
L 22khm - G | Sk unding (7)
) (s} REL
N N N

The only change that is made necessary by the use of piezoelectric
crystals, then, is that the elastic constants are reolaced by the
effective elastic constants given above,

Now, consider elastic longitudinal waves traveling along the
(piezoelectric) Z axis of LiNb03. Using the condensed Voigt notation
one gets

Cys = 55 + Uegp)?e33)y (75)
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c

. c(E), (5) (s)y3, 3f333833 >

333 * G333 * 333(e3y/02 )7 ¢ T - egppdanslp) * —op)
E €33 {3

33

(76)
This expression differs from McMahon's Eq. (34) in the final term.
The conclusion is not affected by this difference. (Mathur and Gupta
(1970) repeat McMahon's expression even though they carry the calcula-
tion to the next higher order term.) The conclusion is that the
effective nonlinearity parameter may be written (McMahon, 1968;

Zarembo and Krasilnikov, 1971; Carr, 1968) as:

. (3C33 * C333)
- T 2 2 - - C (77)
A] k~a 33
or,

It would be desirable to isolate C§33; however, to date this has

been prevented for lack of experimental values of f333. Since the
X-direction in LiNbO3 is not a piezoelectric direction for a
longitudinal wave, it is not necessary to make these considerations
with respect to the magnitude of Cyy7. In quartz these considerations
with respect to C333 are not necessary because the Z-direction is not

a piezoelectric direction for longitudinal waves. For quartz the X-

direction is a piezoelectric direction for longitudinal waves; how-

ever, the difference between C11] and C$1] is smaller than experimen-

tal uncertainty (Thurston et al., 1966).




CHAPTER 111
EXPERIMENTAL APPARATUS AND PROCEDURE

The ultrasonic nonlinearity parameter 8 is determined by
measuring the amplitudes of both the fundamental and second harmonic
of a longitudinal wave propagating in a pure mode direction in a
solid. Let A] correspond to the fundamental amplitude and A2 corres-
pond to the amplitude of the second harmonic. In the theory of
finite wave propagation, A2 is proportional to A]2 in the limit of
infinitesimal fundamental amplitude (Thurston and Shapiro, 1967) or
equivalently for an infinite discontinuity distance (Breazeale and
Ford, 1965). Therefore, measurements were made using the smallest fun-
damental amplitude which provided a workable signal-to-noise ratio for
the second harmonic, and an extrapolation to zero amplitude was made.

The fregquency of the fundamental signal was chosen to be 30 MHz
as a compromise between two opposing processes. The amplitude of the
second harmonic is proportional to the square of the frequency which
implies that a higher frequency leads to a better signal-to-noise
ratio. On the other hand, attenuation and the effects of non-
parallelism also increase with increasing frequency. Therefore,

30 MHz has been found to be the best compromise.

In making nonlinear measurements, the pulse echo technique is

used in order to avoid complications arising from interference

effects.

31
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A. THE ROOM TEMPERATURE CAPACITIVE RECEIVER

The absolute measurements of amplitude are made using the
capacitive receiver pictured in Figure III-1. A diagram of the
apparatus is shown in Figure III-2. The apparatus has a detecting
electrode held in place by a fused silica optical flat in such a way
that it remains insulated from the outer ground ring which is the
electrical ground of the system.

The detector electrode and ground ring are lapped optically
flat to within 2-3 fringes of helium light. The detector electrode
is centered in the ground ring and recessed to a depth of from 5-10
microns below the face of the ground ring. The sample face is also
made optically flat and coated with a thin coating (~ 1000 Z) of
copper by vacuum evaporation. The sample is then positioned on the
ground ring so that the combination makes a parallel plate capacitor
at the end of the sample with a gap spacing of from 5-10 microns. A
bias voltage of approximately 150 volts is applied to the detecting
electrode through a 1 megohm resistor whose purpose is to limit the
current through the detector in case of arcing.

On the top surface of the sample, an X-cut quartz transducer is
attached with nonag stopcock grease. The resonant frequency of the
transducer is 30 MHz. The high voltage copper electrode is
electrically insulated from the rest of the apparatus by a teflon
ring. It is spring-loaded to insure good contact with the transducer.
When a plane longitudinal wave is incident on the sample face causing
it to vibrate, the gap spacing is chanaed and an alternating voltage

is induced between the detecting electrode and ground.




33

AR, o
. 52 Wy e T PR
AR RN I e |

The capacitive detector.

Figure III-1.
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Figure 111-2. Cross sectional view of the detector apparatus.
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B. CALIBRATION PROCEDURES

The calibration of the capacitive receiver which is required
for absolute measurement of amplitude is done by the introduction of
a continuous wave (c.w.) substitutional signal which replaces the
acoustically generated electrical signal. An R.F. generator and an
R.F. voltmeter are attached to the detector button in such a way that
the capacitive detector is not removed from the circuit during
calibration. The equivalent circuit of the setup is the Norton
equivalent. This is represented in Figure III-3 where the parameters
of that circuit are defined as follows:
CD is the quiescent capacitance of the detector;
Cs is the stray capacitance of the detector;
L is the inductance of the wire leading from the banana jack
to the BNC connector (refer to diagram of the apparatus):
Z is the impedance of the resistor located at the base of the
apparatus;

G, is the current generator of the Norton equivalent circuit of

D
the detector;
GS is the substitutional current generator;
is the amplitude of the current produced by the ultrasonic
sigrnal;
is the amplitude of the substitutional current;

1 is a switch that is opened and closed by turning on and off

the ultrasonic pulse.
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The series combination of the inductance, the amplifier input
impedance in parallel with the detector capacitance CD and stray
capacitance Cs,form the total impedance of the detector circuit.
The substituional signal current iS flows through the same impedance
as the acoustical signal current iD‘
Peters {1968) showed that the Thévenin equivalent circuit of

the capacitive receiver is a voltage of amplitude

where A is the amplitude of the ultrasonic wave, Vb is the bias
voltage applied to the detector, and S0 is the static qap spacina.
The amplitude of vibration of the free surface of the sample is twice
the amplitude within the sample because the incident and reflectec
waves add. This is where the factor of 2 enters into Eq. (79).

The current amplitude iD produced by the capacitive detector is

related to the voltage amplitude V by
iD = VwCD R (S0)

where w is the angular frequency of the ultrasonic wave. By combining
equations one gets the current generated by the detector in the Norton

equivalent circuit (Bains, 1974):

2AV. C
s = b D (81)
D SO
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The substitutional generator Guw is adjusted to give the same output
from the amplifier as with the acoustical signal. When this condition

is satisfied,
ig = is . (82)

The current is measured by means of the voltage VS across the
current generator GS and by measuring the impedance of the remainder
of the circuit. The resulting expression for is is

Vs

s 7+ [JulCy + Co) + —‘.]']|
‘ S 50 + jul
The quantity Z is the impedance of the resistor located between the
substitutional source and the capacitive detector. The resistor does
not act as a pure resistance at the frequency used in this work; there-
fore, it is necessary to measure the impedance of the resistor at each
frequency used in the measurements. The impedance measurements on R
are made with a vector voltmeter. The sample detector assembly and
bottom plate are removed from the apparatus and 50 terminators are
connected to the two BNC connectors at the base. A CW variable fre-
quency oscillator (VFO) is connected to the side having the resistor.
Both vector voltmeter (Hewlett-Packard 8405A) probes with isolator
tips are placed at point 1 as shown in Figure III-4 and the phase

angle between the signals is zeroed and the amplitudes are measured.

Probe A of the voltmeter is then left at point 1 while probe B is
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moved to point 2. Tne VFO signal generato. is readjusted to obtain
the same reading of the voltmeter A channel amplitude as before and
the amplitude of the B channel and phase between the probes is
measured. This is done for both fundamental and second harmonics.

The impedance Z is calculated from

e 1 4-1
Z = [ch + R] + JwL] 3 o (84)

where C is the stray capacitance at point 2, including the probe tip;
R] is the resistance of the precision terminator measured with an
impedance bridae; VB] and VB2 are the voltages measured by probe B

at points 1 and 2, respectively, and ¢ is the phase anale. A computer
program is used in which the Lagrange five-point interpolation

formula enables one to calculate |Z| as a function of frequency in the
range 28 MHz to 32 MHz in increments of .01 MHz and from 56 MHz to

64 ¥Hz in increments of .02 MHz. This covers the range in which
impedance measurements are required. The resistor has an impedance

of approximately 10K:. As a consequence, Z is much larger than the
other impedances in the apparatus and to a good approximation

Eg. (83) can be written as

i = TTST (85)

Therefore substituting into (82) one obtains




a1
Vs 3o
A=§WT|— (86)
or
A Vs VoG |Z,]
2 . 2y Yot (87)
Ez Vs 0 %

1
C. EXPERIMENTAL APPARATUS

A block diagram of the experimental setup used for making room
temperature measurements is given in Figure III-5. A photograph of
the setup appears in Figure III-6. An RF oscillator is used to
drive a gated amplifier. The pulses are then passed through an
impedance matching network and a 30 MHz bandpass filter to insure
spectral purity of the ultrasonic wave. The pulsed signal is then
used to drive the 30 MHz transducer which has been bonded to the
sample with nonaq stopcock grease. The pulsed signal from the
capacitive detector is then fed to either a 30 MHz or 60 MHz bandpass
amplifier which rectifies the RF signal and produces an output which
is the envelope of the rectified pulse. The output from the ampli-
fier is monitored with an oscilloscope and the voltage level is
measured with a boxcar averager. The output of the boxcar averager
is proportional to the time average of the input. Therefore, random
noise is averaged to zero and the repetitive signal is measurable
even at levels below the noise level. This signal processing

capability is particularly useful in measuring the extremely low level

signals from the second harmonic.




42

*sjudwaJnseaw apnj i jdwe
jusuwade|ds1p ayj 404 pasn Juswsbuesae |ejuswiaadxa ay} JO wedbeip Xdo(g G-I 3unbiy

[ ZHW 09
h — ;owmwmmm:_ 3dodoso| | 1asp
w J3bbray
uL X ZHi 0E
40D L U]
SRR A3 1 41| duy
430Npsued ] ssedpueg be9 AMH\I
ZHi LE
abpLug
3DUPpaUW] 9 dues 433Uno)
. Adouanbauy
43A 1323y
TP
1 oL J03enually
49333 | OA AW 43114 4HA
o : d9{qno
A ZHH 09 Lanea
A <}
Aiddng ° o
seiq 49733u} [ OA J03e[|tIsQ
A3ALID3Y BN anLag




43

*snjededde |ejudwlaadxd ay} jo ydeabojoyqd "9-11] a4nbiy

BT N RS I

e aeey




44

After removing the acoustic signal source a substitutional
signal is applied to give an cutput of the same magnitude as the
signal to be measured. The voltage across the signal generator is
measured with an RF voltmeter. For measurements of the second har-
monic, the fundamental frequency is doubled by a ring bridge mixer
and filtered with a 60 MHz bandpass filter.

The bias voltage applied to the detector is recorded and the gap
spacing of the receiver is measured by measuring its capacitance with
an impedance bridge. From the acquired data, the amplitude of the

fundamental and second harmonic are determined.
D. QUARTZ SAMPLES

The quartz samnles were grown, oriented, and machined by the
Valpy-Fisher Corporation. A photograph of the samples is shown ir
Figure II1-7. A description of the quartz samples is given in
Table 1II-1. The axis of the crystals are oriented to within (=.5°).
The faces are lapped flat to within two fringes of light from a
helium d*.charge lamp and parallel to within 15 seconds of arc. The
cube was used to take measurements in the X-, Y-, and Z-directions.
It is adequate for measurements in the Z-direction and thus it will
be designated as the Z-cut sample. Measurements in the X-direction
indicated that a larger sample is required to enhance the low level
second harmonic. The cylindrical X-cut sample has a length of
1.5 inches. The receiving electrode as well as the quartz trans-

mitting transducer for the Z-cut quartz specimen is 0.765 cm in
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TABLE I11-1
DESCRIPTION OF QUARTZ SAMPLES
Principle Diameter Length
Direction Shape (em) (cm)

z Cube 1.4938
X Right 3.8386

circular

cylinder
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diameter. In the case of the X-cut quartz specimen, they have a

diameter of 1.269 cm.
E. LITHIUM NIOBATE SAMPLES

The 1ithium niobate samples were grown and oriented by Crystal
Technology, Inc. They were acoustic grade LiNbO3 which were machined
into a right circular cylinder (Figure III-8). For the X-cut sample,
the X-axis corresponded to the axis of the cylinder. Examination
with crossed polaroids revealed no obvious strains. Similarly, for
the Z-cut sample the Z-axis corresponds to the axis of the cylinder.
The shapes and dimensions of the LiNbO3 samples are listed in
Table I111-2. Observations of Philip and Breazeale (1982) indicated
that it was desirable to obtain a longer Z-cut sample in order to
enhance the extremely low level second harmonic observed along this
direction. The Z-cut sample is 1.5" long. The specifications regard-
ing orientation of crystalline axis flatness and parallelism are the
same as for quartz. The diameter of the receiver electrode used for

taking data with the 1ithium niobate samples is 1.269 cm.
F. PHASE MEASUREMENT

The phase of the second harmonic depends directly on the sign
of the nonlinearity parameter 8. A negative 2 indicates 180° phase
difference from a positive 8. A negative 3 is not to be expected in
fluids, as this would violate the second law of thermodynamics
(Lord Rayleigh, 1910). The situation is different in solids, however.

An unambiguous proof of the existence of a negative & (in fused

A —
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TABLE 1II-2
! DESCRIPTION OF L'iNbO3 SAMPLES

Principle Diameter Length

Direction Shape (cm) (cm)
X Right circular 2.54 2.5561

cylinder

z Right circular 2.54 3.81585
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silica) exists (Bains and Breazeale, 1975). Although a negative g
would be an unusual situation, it cannot be ruled out when one is
investigating a new class of solid symmetry, as is the case here.
The general technique for determining the sign of g for an
unknown sample is as follows:
1. A sample whose £ is known to be positive is placed on the
capacitive receiver.
2. The output of the capacitive receiver is examined with a
phase sensitive detector.
3. Keeping everything constant, the known sample is replaced
by an unknown.
4. A phase shift of 180° in the output of the phase sensitive
detector indicates a negative &.
In these measurements a 100 MHz oscilloscope could actually be used
as a phase sensitive detector since it had dual channel input with
the possibility to add and subtract the two inputs. The experimental
setup for the measurement is shown in Figure II1I-9. A Cu[111] sample
having a known positive & is placed in the capacitive detector. The

output from the capacitive receiver is fed into a directional coupier®

*The importance of using a directional coupler is that with a
conventional power splitter one automatically loses 6 DB of signal in
each of the two signal paths. A 6 DB loss for the low level second
harmonic signal would reduce an already marginal signal-to-noise
ratio. With the directional coupler, on the other hand, the loss is
very small in one of the outputs and considerably greater in the
other. The loss in the signal path carrying the 30 MHz fundamental
signal can be great since that signal is extremely large compared
with the second harmonic signal. Therefore, the directional coupler
is a vital component in this experimental setup.
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which splits the signal into two parts. One ¢f the signals from the
directional coupler is fed into the 30 MHz IF amplifier. That signal
is then frequency doubled and fed into channel A of the oscilloscope.
The other signal from the directional coupler is fed into the 60 MHz
power amplifier which is cascaded with the 60 MHz IF amplifier. The
output of the 60 MHz IF amplifier then enters channel B of the
oscilloscope. The display amplitude for channels A and B are adjusted
to be approximately the same size. The time-coherent signals from
channel A and B are then added together and the channel B invert con-
trol is activated. The result for the case of Cu[l111] is that the
added signal increases in size significantly. This indicates that
one of the signals has undergone a phase shift of approximately

180° in passing through the amplifiers. For comparison, the Cu[111]
sample is then removed and with everything kept constant the

unknown is placed in the capacitive receiver. 1If the behavior is

the same as copper, then the unknown g is positive. If the behavior

is opposite to that of copper, then the unknown 8 is negative.
G. VELOCITY MEASUREMENTS

In order to determine K2 one must either measure the velocity
or use the appropriate combination of SOE constants from the
literature. Reliable values of SOE constants exist for quartz, but
not for LiNb03. Therefore, velocity measurements are necessary for
LiNbO3. The pulse overlap technique is used with the same experi-
mental setup as shown in Figure III-5 (p. 42). The pulse width from

the gated amplifier is broadened until an interference pattern is
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produced. As the frequency of the VFO is changed, the pizttern goes
through a series of maxima and minima (Figure II11-10). The minima

are counted in a given frequency interval. The velocity ¢ is then

24FL
an

ponding to the number of minima An, and L is the length of the

calculated from c = where aAf is the change in frequency corres-

sample. The computed value for velocity is corrected for the presence

of the transducer and bond by essentially the technique used by

Williams and Lamb (1958).




] Maxima in the interference pattern

Figure 111-10. Echo overlap technique for velocity measurements.




CHAPTER TV
RESULTS AND DISCUSSION

In this chapter the results of measurement of the nonlinearity
parameters and TOE constants of quartz and L1'Nb03 are presented.
Most of the measurements were made with samples which are 1" diameter
right circular cylinders and transducers having a diameter of 1.27 cm.
In previous investigations with crystals of cubic symmetry this size
has been assumed to be large enough that the infinite plane wave
assumption is valid, so that no diffraction correction is necessary.
The present investigation shows that in fact diffraction causes a
perceptible change in the measured nonlinearity parameters of quart:z
and LiNb03. Our data are corrected for diffraction. Interesting
and unexpected properties of quartz and LiNb03, such as a negative
nonlinearity parameter, are considered in connection with interpreta-
tion of the data.

A. NONLINEARITY MEASUREMENTS OF QUARTZ
IN THE Z-DIRECTIO!

The results of the measurements of nonlinear distortion of
ultrasonic waves in quartz in the Z-direction are listed in
Table IV-1. A plot of A2 vs. A]2 is given in Figure IV-1. The line
drawn through the experimental points is the linear least squares fit

of data points. The correlation coefficient, given as a measure of
mo

how well the line fits is defined as: correlation coefficient = S
y

55
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Figure IV-1. Graph of A2 VS. A12 for Z-cut quartz.
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where m is the slope, oy is the standard deviation of the x array of
data points, and °y is the standard deviation of the y array of data
points. Possible values of the correlation coefficient may range
from -1 to +1, with a perfect fit corresponding to either 1. The
value of .995 indicates an excellent fit. The fact that the line
does not exactly intersect the origin results from residual amplifier
noise (Bains, 1974) but does not have a perceptible effect on the
evaluation of the nonlinearity parameter.

A plot of the nonlinearity parameter as a function of the
fundamental amplitude is shown in Figure IV-2 in which an extrapo-
lation to zero amplitude is made. The extrapolated curves approach
the ordinate with a horizontal tangent (Yost, 1972). The extrapolated
value of g, is now corrected for diffraction. The diffraction
correction which is used (Blackburn, 1981) is one in which the funda-
mental signal is corrected with linear theory. The effect of
diffraction on the second harmonic is neglected as a first approxima-
tion. The correction is applied to the nonlinearity parameter of the

Z-cut quartz sample in the following form:

g 2

corrected Euncorrected DL
where DL2 = correction term. The value obtained from data in
Table 111-2 (p. 49), is used to evaluate this term. For the
Z-direction in quartz DL2 = .8136. The uncorrected value of

Bz =6.00 was diffraction corrected to give a value of BZ = 4,88.

This value is used with the SOE constants from the literature
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(McSkimin et al., 1965) to calculate the TOE constant:

12

Cans = -8.34 = .55 x 10'2 dynes/cm?

333

B. NONLINEARITY MEASUREMENTS OF QUARTZ
IN THE X-DIRECTION
The results of the measurements of the absolute amplitude of
ultrasonic waves of quartz in the X-direction are listed in Table IVv-2,
A plot of A2 vS. A12 is given in Figure IV-3 in which the straight
line is a Teast squares fit of the data. The correlation coefficient
of 0.9995 indicates an almost perfect fit of the data and the inter-
cept is even smaller than observed in Figure IV-1 (p. 57). The size
of the samples and transducer used for all other measurements were
great enough that the plane wave approximation would have contributed
a certain amount of systematic error. In order to eliminate this
approximation, the diffraction correction was applied in each case.
The uncorrected nonlinearity parameter B, was plotted versus A] in
Figure IV-4. The curve is extrapolated to zero amplitude to give the
most reliable value for the uncorrected B, = -.636. The correction
factor is DL2 = .8263. Therefore, the diffraction corrected value
is 8, ° -.526. The experimental value of & and the SOE constants from
the literature (McSkimin et al., 1965) are used to calculate
C]]] =2.15 + .06 x 10]2 dynes/cmz. The C]]1 constant for quartz is,
strictly speaking, the piezoelectrically stiffened coefficient. How-
ever, Thurston et al. (1966) found the piezoelectric contribution to

guartz in the X-direction to be within their experimental error.
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9 '
8t A2 Intercept = 0.137 x 10'14 m o
> | Slope = 3.991 x 108 ”! / J
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Figure IV-3. Graph of A2 VS, A12 for X-cut quartz.
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Similarly, no distinction is made here between the constant field

coefficient of X-cut quartz and the effective coefficient.

C. THE BEHAVIOR OF QUARTZ IN THE Y-DIRECTION

The Y-direction for crystals having trigonal symmetry is not a
Tongitudinal pure mode direction. The Y-direction corresponds to
a quasilongitudinal mode coupled to a shear mode. As a consequence
of this coupling, no quantitative data for the determination of
TOE constants can as yet be obtained in this direction using the
capacitive detector. However, the Y-direction for both quartz and
lithium niobate made a very distinctive and easily recognized
pattern using the capacitive detector. A comparison of the
behavior in the Z-direction with that in the Y-direction is given
in Figure IV-5.

In the Z-direction in which a longitudinal wave propagates, the
amplitude decays exponentially. In contrast, in the Y-direction in
quartz the amplitude increases to a maximum value, then decreases.
Evidentally there is very 1ittle energy initially in the longitudinal
mode but upon successive reflections the pulse amplitude grows,
apparently as a result of mode conversion upon reflection. The
amplitude decreases, probably as a result of both attenuation and the

conversion of energy back into the transverse mode (which is not

detected by the capacitive receiver).




Typical pulse train for a pure
mode longitudinal wave

Typical pulse train for coupled modes
in the Y-direction of quartz

Figure IV-5. A comparison of the pulse train for quartz in the
Z- and Y-directions.
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D. DISCUSSION OF RESULTS FOR QUARTZ

Measured values of the nonlinearity parameter of quartz are
listed in Table IV-3, where By for quartz in the X-direction is found
to be negative, an unusual situation. The fact that 8 is negative in
this case was concluded from evaluation of the data of Thurston et al.
(1966) and comparing with our measured data. Such a behavior has been
observed only once before, with fused silica (Bains and Breazeale,
1975). It has not been observed with crystals having cubic symmetry
and hence is of considerable importance to the interpretation of data
on trigonal crystals. This behavior implies that the second harmonic
is 180° out of phase with the fundamental and hence the distortion of
the wave form is toward a backward sawtooth wave instead of the usual
forward sawtooth encountered in the case of a positive nonlinearity
parameter. The phase of the second harmonic is not routinely deter-
mined in the experiments. For fused silica this behavior implies that
C]]1 is positive; however, in quartz C]]] still is negative, as can be
seen from the expression C]]] = -C1](3 + 3).

If |g! < 3, then a negative 8 will not cause a reversal in the

sign of C However, if |g| > 3, then, a negative ¢ implies a

1M1
positive cl]]' In the measurements, then, a misinterpretation of the
sign of 8 can cause errors in both the sign and the magnitude of C”1
for crystals of trigonal symmetry! Our measured velocities in the

quartz samples agree very closely with those given by McSkimin et al.

(1965). McSkimin's SOE constants therefore were used for the calcu-

lation of the TOE constants in this experiment. The SOE constants,

PV VR

e
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TABLE IV-3

VALUES OF THE NONLINEARITY PARAMETERS FOR QUARTZ

Sample Orientation 8
z 4.88
X -0.526

along with the calculated TOE constants of quartz are listed in
Table IV-4. The uncertainties listed with the constants are the
random uncertainties. They were calculated from the standard
deviation in the nonlinearity parameter. The random error was some-
what greater for the Z-direction than the X-direction because the
small cube-shaped samples were harder to align than the large
cylindrical samples. Measurement of the TOE constants of quartz
made by Thurston et al. (1966) using the hydrostatic pressure
technique are also presented in Table IV-4, as are those of Stern
and Smith (1968) who used a modification of the uniaxial stress-
hydrostatic pressure technique.

The agreement among the three sets of data indicates that the
harmonic generation technique is capable of producing dependable
values of C]1] and C333 for crystals of trigonal symmetry. The dis-
agreement ranges from less than 1% to approximately 2.5%. The random
error of these measurements is less than 6.5% as indicated.

These data represent the first set of measurements of both C1]1

and C333 for crystals having trigonal symmetry using the capacitive

detector. The close agreement with the measurements made of two
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independent groups using different techniques also verifies the
validity of the perturbation solution of the nonlinear equation for

trigonal symmetry obtained by Philip (1983).
E. THE SOE CONSTANTS OF L'iNbO3

The value Ky, may be calculated from the measured velocity
and density of a sample or, alternatively, one may use a reliable SOE
constant from the published literature. If there is good quality
control of the material; i.e., no sample dependence, then there
should be almost no variation in the observed SOE constants from
sample to sample or from independent measurements. However, there
was a noticeable variation in the SOE constants of LiNbO3 reported
in the Titerature as illustrated in Table IV-5. Therefore as a
result of this variation the K2 were determined by direct measurement
of ultrasonic wave velucities in the samples used for measurement of
nonlinearity parameters. The results are listed in Table IV-5. The
SOz constants calculated in this experiment are somewhat lower than
the SOE constants given by Philip and Breazeale (1982) and Nakagawa
et al. (1973). 1In both of these cases, the density of lithium
niobate was quoted as being o = 4.7 gm/cm3 instead of the more
accurate value of o = 4.644 gm/cm3 (Cook and Jaffe, 1979).
If a density of ¢ = 4.644 is used to calculate the SOE constants of
Philip and Breazeale (1982) and Nakagawa et al. (1973), then there is
a close aareement with the SOE constants used in the present work as

illustrated in Table IV-6.
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TABLE IV-6
SOE CONSTANTS OF LiNbO3 USING DENSITY o = 4.644 gm/cm3
E D
N C33
X 1012 dynes/cm2 X 10]2 dynes/cm2
Present 1.98 2.48
experiment
Nakagawa et al. 1.98 2.48
(1973)
Philip and Breazeale 1.964

(1932)
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F. NONLINEARITY MEASUREMENTS OF LITHIUM
NIOBATE IN THE X-DIRECTION

The results of the .»asurer=nt of nonlinear distortion of waves
in 1ithium niobate in the X-direction are listed in Table IV-7. The
plot of A2 vS. A]2 for this sample is given in Figure IV-6. The line
through the data points is a least squares fit of the data. The
correlation coefficient of .9996 indicates an almost perfect fit of
the data. The intercept indicates that residual noise is very small.
The plot of the nonlinearity parameter Bx Vs, A], the fundamental
amplitude, appears in Figure IV-7. The curve is extrapolated to zero
amplitude to give the most reliable value for Ex' The uncorrected
value for 2y is £y = 7.171. MWith a diffraction correction factor
DL = ,844F, the corrected value for s is . 6.01. The relative
value of the TOE constant is calculated to be Cyy1 = -17.83 =
.35 x 1012 dynes/cmz.

During the process of taking data, a very strong second harmonic
was observed with X-cut 1ithium niobate. The magnitude of the second
harmonic was much larger than one would expect based on the value of
C]]] reported by Nakagawa et al. (1973). Therefore, a photograph was
taken (Figure IV-8) to illustrate the strong second harmonic found
with our samples. Both the fundamental and second harmonic are
illustrated. The second harmonic is apprcximately three times as
large as would be expected from Nakagawa's value of Cl]l’ The slow

decrease in amplitude in the fundamental pulse train results from

the very low attenuation in LiNbO3. This peculiar property in the
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Figure IV-8. The fundamental and second harmonic signal from

X-cut lithium niobate.
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material is confirmed by the data of Spencer et al. (1965). The two
pulse trains in Figure IV-8 illustrate the point that the growth of
a large second harmonic is not necessarily associated with a large
attenuation coefficient for the fundamental.
G. VALUES OF NONLINEARITY PARAMETER AND TOE CONSTANTS
OF LiNbO3 IN THE Z-DIRECTION
The results of the measurement of absolute amplitude of the
fundamental and second harmonic of ultrasonic waves in 1ithium
! niobate in the Z-direction are presented in Table IV-8. The relation-
ship of A2 to A]2 is plotted in Figure IV-9. The correlation
coefficient indicates an excellent linear fit. The increase in the
scatter of the data results from the extremely small second harmonic
siagnal observed in the Z-direction. The small intercept indicates the
very small residual noise. The relationship g, Vs. A] is plotted in
Figure 1V-10 and the curve is extrapolated to zero amplitude to yield

the most reliable uncorrected value for &_ which is Ez = 0.444. The

z
diffraction factor is DL2 = .8082; therefore, the corrected value
for e, is £, = .359. The assignment of the sign of g, and hence the

12

evaluation of C333 = -8.42 + .16 x 10 dynes/cm2 results from a phase

measurement described in the next section.
H. EVALUATION OF THE SIGN OF g, FOR LiNbO3

In contrast to the situation in quartz, the data of Nakagawa

did not allow an unambiguous assignment of the sign of 8, for LiNb03.
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Therefore, it is necessary to determine the sign of Bz by direct
measurement. Results of the measurement of the phase of Z-cut
1ithium niobate by the comparison procedure (Chapter III) are illus-
trated in Figure IV-11. It is noted that the behavior for Z-cut
1ithium niobate is exactly analogous to the behavior of Cu[111]. The
effect is not as pronounced for Z-cut lithium niobate as that for
Cu[111] as a result of the comparatively smaller second harmonic.

The fact that 2 for Cu[111] is known to be positive indicates that

the 8 for Z-cut lithium niobate is also positive. This particular
measurement is difficult as a result of the very small second harmonic

signal observed in the Z-direction of LiNb03.
1. DISCUSSION OF RESULTS FOR LiNbO3

The measured values of the nonlinearity parameters for Tithium
niobate are listed in Table IV-9. The definition of the nonlinearity
parameter presented in this work is consistent with the corresponding
definition for liquids and gases. [It is a factor of three greater
than the expression used by Philip and Breazeale (1982).] The calcu-
lated TOE constants for both X- and Z-directions in lithium niobate
are listed in Table IV-10.

First consider the X-direction. The standard deviation in C”.I
is of the order of 2%. Since the same procedure and setup was used
for LiNbO3 as for quartz, the systematic error should be of the same

order of magnitude. Therefore, the probable systematic errors should

be no greater than approximately 3%. Only two known published values
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TABLE 1V-9

VALUES OF THE NONLINEARITY PARAMETER € FOR LITHIUM
NIOBATE (CORRECTED FOR DIFFRACTION)

Sample
Orientation g
X 6.01
A C. 359
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(Nakagawa et al., 1973; Philip and Breazeale, 1982) are available for
comparison with the present measurement of C]]].

The measurement completed in this experiment indicates a value
for C]]] approximately three times larger than the value given by
Nakagawa et al. (1973). Considering the large magnitude of the SOE
constants in the X-direction, a value for C]]] of the order of magni-
tude suggested by Nakagawa et al. would imply a very low level second
harmonic signal. However, that is contrary to the very strong second
harmonic signal illustrated in Figure IV-8 (p. 76).

The values of C”1 given by Philip and Breazeale (1982) are 10%

lower than measured in this investigation. This difference in part
may result from actual differences in the samples themselves. There
are indications of some sample dependence in the value of the SOE
constants and hence there may be sample-dependent variations in the
TOE constants as well. Refinements in crystal arowing techniques took

place in the late 1970s (Rduber, 1978). The sample measured by Philip

and Breazeale (1982) was grown in 1975 by Union Carbide. Our samples
were grown in 1982 by Crystal Technology. Since LiNbO3 crystals are
susceptible to a number of defects such as grains canted by 1 or 2
degrees and/or dislocations, efforts recently have been directed
toward reduction of defect density during crystal growth. The very best
crystals are thought still to have surface dislocation densities from

3 to 104/cm2 (Rauber, 1978). Variation in dislocation density can

10
make the harmonic generation measurement of the TOE constants material

dependent (Truell et al., 1969; Hikata et al., 1965). It is possible,
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therefore, that the harmonic generation technique we have used could
serve as a sensitive nondestructive test for quality control in the
manufacture of L1‘Nb03 crystals. In order to make this test feasible
one would need to correlate magnitude of 8 with dislocation density.

Consider next the measurements made on Z-cut LiNb03. Since the
Z-direction in L1'Nb03 is a piezoelectrically active direction, the
TOE constant given in-the present work is the piezoelectrically
stiffened coefficient. The standard deviation of the data is 2%; the
systematic error is estimated to be 3%. Therefore the total error
is of the order of 5%. No comparison is made with Nakagawa's value
for this TOE constant for a number of reasons. First, Nakagawa's
large error bars (two times the value of the quantity measured)
for this coefficient make a comparison impractical. Second,

Nakagawa subtracts some of the coupled terms in an attempt to
approximate a constant field coefficient; however, one of those terms
(whose magnitude is unknown) is left imbedded in the expression for
the constant field coefficient.

One peculiar characteristic of Z-cut LiNbO3 is the very low level
second harmonic generated. The small value given for BZ (Table 1v-9,
p. 83) indicates that lithium niobate in the Z-direction more closely
approximates a linear solid than any other material that has been
previously studied.

0f equal interest is the fact that the second harmonic for X-cut
quartz was also very low. Both of these examples indicate that a very

small second harmonic is present in the direction of piezoelectric
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stiffening. This should be checked with other piezoelectric trigonal
crystals to determine whether or not this is a general property.

Philip and Breazeale (1982) first observed with a capacitive
receiver the fact that a strong piezoelectrically coupled solid,
i.e., lithium niobate, produced a signal with no bias voltage applied
to the detector. This effect was observed in the Z-direction and
also in the Y-direction (in which coupled modes appear that are
strongly piezoelectrically stiffened). A similar effect was observed
with the Z-cut LiNbO3 sample used in this work. A comparison of the
fundamental signal from Z-cut lithium niobate with and without bias
voltage applied is illustrated in Figure IV-12. It is conceivable
that the signal without bias could represent the piezoelectric con-
tribution to the third-order elastic behavior. The effective TOE
constant takes the following form:

cD

_ (E . .
333 ° C333 + (piezoelectrically coupled terms) .

1f the piezoelectric contribution could be subtracted from the
effective TOE constant reported in this work, the constant field
coefficient could be evaluated. The measured ratio of the piezo-
electric contribution to the total fundamental amplitude is .35. The
contribution to the second harmonic without bias is too small to be
measured with existing instrumentation.

Philip actually observed the strongly piezoelectrically

stiffened second harmonic signal in the Y-direction both with and
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Fundamental without bias voltage .5 V/cm

Figure IV-12. A comparison of the fundamental ultrasonic signal
from LiNbO3 with bias voltage applied and without bias voltage
applied.
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without bias applied to the capacitive detector. It is to be assuried
that an adequate refinement of the apparatus would allow one to
observe the piezoelectrically stiffened second harmonic in the other

piezoelectrically active directions in which it is so small.
J. SUMMARY AND CONCLUSIONS

The nonlinearity parameters and TOE constants of quartz and
lithium niobate have been measured and compared with similar measure-
ments published in the literature. Measurements in quartz have pro-
duced results which agree closely with values published prior to this
work (Thurston et al., 1966; Stern and Smith, 1968). This should
serve to verify the validity of the perturbation solution of the non-
linear equation in the X- and Z-directions for trigonal symmetry and
to demonstrate that the use of the capacitive detector provides
reliable data for crystals of trigonal symmetry.

Measurements in LiNbO3 have yielded results which disagree with
the measurements reported by Nakagawa et al. (1973). A comparison of
the present results with Philip and Breazeale (1982) and the variation
of SOE constants indicates the possibility of some sample dependence.
It is observed that diffraction corrections are more important in the
evaluation of the nonlinearity parameter than assumed for crystals of
cubic symmetry.

A negative nonlinearity parameter is found to exist for quartz

in the X-direction. This is a phenomenon which thus far has been

observed only once before—in fused silica.
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Very small nonlinearity parametars are observed in the direction
corresponding to piezoelectric stiffening. The possibility exists
that this is a general property of piezoelectric trigonal crystals.
The nonlinearity parameter of Z-cut LiNbO3 is the smallest which has
been measured up to the present time and consequently Z-cut LiNbO3
more closely approximates a linear solid than any other material does.
There are some indications that for a strong piezoelectrically
coupled solid such as LiNbO3 the piezoelectric contribution to the
total effective TOE constants may be measured with the capacitive

detector and thus the constant field TOE constant may be determined

in the Z-direction.




! CHAPTER V
SUGGESTIONS FOR FURTHER WORK

This investigation has left a number of subjects which require
further study.

1. The variations in the measured values of the TOE constants
of LiNbO3 suggest the possibility of sample dependence. This point
should be investigated further by making measurements with a number
of samples from different manufacturers including both optical and
transducer grade crystals.

2. There were very low level second harmonic amplitudes
resulting from the essentially "linear" behavior of quartz in the
X-direction and L1‘Nb03 in the Z-direction. These directions corres-
pond to the longitudinal mode piezoelectric direction for both
crystals. With only two samples one cannot decide whether this is
coincidental or is a general property of piezoelectric trigonal
crystals. Further measurement with the trigonal crystals will be
necessary to determine whether this is a general property. If this
property should prove to be general, then it might have significant
theoretical implications in the study of piezoelectric solids.

3. The measurements reported in this work were made at room
temperature. Especially in LiNb03, one finds a strong temperature
dependence of many elastic parameters. Therefore, measurements of

h the TOE constants of quartz and LiNbO3 should be made as a function

of temperature down to liquid helium temperature. These measurements

9
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would provide valuable information about nonlinear properties of
these crystals which are fundamental to a detailed theory of the
solid state.

4. It has been observed that the strohg piezoelectrically
coupled directions provide a signal from the capacitive detector,
even when no bias voltage is applied. We have not observed this
behavior with materials other than piezoelectric materials. This
subject is worthy of detailed investigation. It is possible that
the piezoelectric third-order elastic constants could be determined
by such measurements. This would give access to constant field
TOE constants. Also, the fijklm (which have never been measured)
might be separated from the piezoelectric contribution by subtracting
all of the other more easily measured higher-order terms,

5. The significance to solid state physics of the (rarely

occurring) negative nonlinearity parameter should be investigated

further.
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